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Abstract. We examine the weak noise limit of an overdamped dissipative system within a semiclassical
description and show how quantization influences the growth and decay of fluctuations of the thermally
equilibrated systems. We trace its origin in a semiclassical counterpart of the generalized potential for the
dissipative system.
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1 Introduction

One of the important issues in nonequilibrium phenom-
ena in the macroscopic nonlinear systems is to understand
the interplay of nonlinearity of the system and the fluc-
tuations of its environment. The problem is fairly gen-
eral in the context of chemical reactions [1], breakdown
of electronic devices [2], phase transitions [3] etc. The es-
sential description of the physical situation rests on the
Fokker-Planck equations for the probability distribution
functions of the relevant variables of the dynamics. In the
weak noise limit the fluctuations have been described [3–6]
by appropriate auxiliary Hamiltonian or path integral
methods. The theoretical results have been corroborated
by remarkable experiments on fluctuations using analogue
electronic circuits [3], which allow the phase space trajec-
tories of fluctuations to be observed directly in a precise
manner. These studies have enriched our understanding
in several theoretical issues, e.g., the symmetry between
the growth and the decay of classical fluctuations in equi-
librium and its breakdown under nonequilibrium condi-
tions [3], the existence of a nonequilibrium potential of a
dissipative system [5,6] etc.

It is the purpose of this paper to extend the theory to
the semiclassical context. The quantization of the system
itself adds a new dimension to the interplay of nonlinearity
and stochasticity in a dissipative system. To make a fair
comparison with classical theory we adopt the Wigner’s
phase space distribution function of c-number variables.
The weak noise limit can then be appropriately employed
to develop an auxiliary Hamiltonian formulation at the
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semiclassical level in terms of these phase space variables.
This allows us to realize the existence of an optimal force
of purely quantum origin derivable from the fluctuating
field and relate it to the momentum of the auxiliary Hamil-
tonian. The quantum correction also makes its presence
felt in the growth and decay of fluctuations of thermally
equilibrated semiclassical systems keeping the symmetry
preserved.

The outline of the paper is as follows: In Section 2 we
introduce the general aspects of dynamics of dissipative
quantum system in terms of the Wigner phase space func-
tion. In Section 3 we consider the weak noise and semi-
classical limit under overdamped condition and take re-
sort to the well-known auxiliary Hamiltonian description.
The quantum part of the optimal force is then explicitly
derived. The symmetry between the growth and decay of
fluctuations in a thermalized quantum system is discussed
in Section 4. The existence of a semiclassical contribution
to the potential in a dissipative system is then shown in
Section 5. The paper is concluded in Section 6.

2 Quantum dynamics of a dissipative system

We consider a dynamical system characterized by a po-
tential V (x) coupled to an environment. Evolution of such
an open quantum system has been studied over the last
several decades under a variety of reasonable assump-
tions [7–9]. Specifically interesting is the semiclassical
limit of an Ohmic environment. The dissipative time evo-
lution of the Wigner distribution function W (x, p, t) for
the system with unit mass (m = 1) under the potential
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V (x) can be described by [10–12]
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where γ and D are the dissipation constant and the dif-
fusion coefficient, respectively. x and p are c-number co-
ordinate and momentum variables. The drift term is a
direct consequence [8] of the existence of γ-dependent
term in the imaginary part of the exponent in the ex-
pression for the propagator for the density operator in the
Feynman-Veron theory and has been shown to be respon-
sible for appearance of a damping force in the classical
equation of motion for the Brownian particle to ensure
quantum-classical correspondence. γ and D are related by
the fluctuation-dissipation relation, D = γ

2~ω coth ~ω
2kbT

(in the semiclassical limit D = γkT ). ω is the renormalised
linear frequency of the nonlinear system. The quantum
correction to classical Liouville motion is contained in the
~-containing terms in the sum. ε is a parameter (whose
value is 1) which is kept in the equation for bookkeeping
the Wigner correction term in our further analysis. We
put ε = 1 at the end of calculation.

Equation (1) had been used earlier in several occasions.
For example, Zurek and Paz [10] and others [12] have stud-
ied some interesting aspects of quantum-classical corre-
spondence in relation to decoherence and chaos. Based on
this equation and its variant chaotic dissipative systems
has been studied [11,13–15]. The equation also yields the
simplest leading order quantum correction term to classi-
cal Kramers’ rate [16]. The primary reason for choosing
equation (3) as our starting point is that it reaches the
correct classical limit when ~ → 0 so that D becomes a
thermal diffusion coefficient (γkT ) in the high tempera-
ture limit and the Wigner function reduces to the corre-
sponding classical phase space distribution function and
we recover the Kramers’ equation which describes classical
Brownian motion of a particle in phase space.

3 Weak noise and semiclassical limit
of quantum dissipative dynamics

The weak noise limit of a dissipative system within a
semiclassical description can be conveniently described by
a “WKB-like” ansatz (we refer to “WKB-like” since we
are considering more than one dimension. Traditionally
WKB refers to one dimension only) of equation (1) for
the Wigner function of the form

W (x, p, t) = Z(x, t) exp
(
−xp
~

)
exp

(
− s

D1

)
, (2)

where D1 = D
ω2 . The weak noise limit is defined [3] as

D1 → 0 and semiclassical limit refers to (~ → 0). Z(x, t)
is a prefactor and s(x, p, t) is a classical action which is
a function of c-number variables x and p, satisfying the
following Hamilton-Jacobi equation,
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The derivation of equation (3) is based on the follow-
ing consideration. Since in the weak noise limit D1 is
the relevant small parameter one obtains with ansatz (2)

in leading order a term proportional to ~2n
(

1
D1

∂s
∂p

)2n+1

which is not balanced by any other term of the same order
D1
−(2n+1). This is because the highest derivative in equa-

tion (1) does not have a factor scaling with the correspond-
ing power of D1. The successive terms next to the leading
order are also ~-containing terms. All of these terms van-
ishes in the semiclassical limit (~ → 0). Therefore the
leading order term that remains gives rise to equation (3).
It is thus obvious that an ansatz (2) with ~ finite is not fea-
sible. The semiclassical limit ~→ 0 is a necessary require-
ment for the validity of ansatz (2). The above equation
can be solved by integrating the Hamiltonian equations of
motion,

ẋ = p

Ẋ = P − γX

ṗ = V ′ + γp− 2ω2X − ε
∑
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which are derived from the following effective Hamilto-
nian Heff

Heff = pP − V ′X − γXp+ ω2X2

+ε
∑
n≥1
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Here we have put ∂s
∂x = P and ∂s

∂p = X . The introduction
of additional degree-of-freedom by incorporating the aux-
iliary momentum (P ) and co-ordinate (X) makes the sys-
tem an effectively two-degree-of-freedom system. The ori-
gin of these two variables is the thermal fluctuations of the
environment [3]. The auxiliary Hamiltonian Heff is not to
be confused with the microscopic Hamiltonian comprising
the system, the bath and their coupling. Thus the phase
space trajectories concern fluctuations of the c-number
variables.
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Under overdamped condition (ẍ � γẋ; Ẍ � γẊ)
equations (4) can be easily reduced to the following form:

ẋ = K(x) +
2ω2X

γ

Ẋ = −∂K(x)
∂x

X (6)

where

K(x) =
1
γ

−V ′ + ε
∑
n≥1
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It is easy to recognize the quantity 2ω2X
γ as a momen-

tum and redefine it as pr. Therefore equations (6) may be
rewritten as

ẋ = K(x) + pr

ṗr = −∂K(x)
∂x

pr. (8)

So the overdamped motion is described by the following
effective Hamiltonian,

Hod =
p2
r

2
+K(x)pr. (9)

The above auxiliary Hamiltonian description (8, 9) is iso-
morphic in form to that of Luchinsky and McClintock [3],
who had considered an overdamped classical Brownian
motion in a force field K(x), driven by a weak white noise
ζ(t) whose intensity D1 � 1 as

ẋ = K(x) + ζ(t), 〈ζ〉 = 0 , 〈ζ(t)ζ(0)〉 = D1δ(t). (10)

Equivalently the corresponding Fokker-Planck equation
for the probability density P (x, t) is

∂P (x, t)
∂t

= −∂K(x)
∂x

P (x, t) +
D1

2
∂2P (x, t)
∂x2

· (11)

The large fluctuations of scale �
√
D1 can therefore be

treated in the weak noise limit D1 → 0 [3,5,6] by “WKB
like” approximation of the Fokker-Planck equation (11) in
the form

P (x, t) = y(x, t) exp
[
−φ(x, t)
D1

]
. (12)

Here y(x, t) is the prefactor and φ(x, t) is a “classical” ac-
tion describing a Hamiltonian-Jacobi equation which can
be solved by solving Hamilton’ s equation (8) with pr = ∂φ

∂x
as the momentum for auxiliary system.

The important distinguishing feature of the above de-
scription in which the system is treated semiclassically is
the structure of K(x) which is given by equation (7) and
comprises of two terms:

K(x) = Kcl +Ksemi(x) (13)

where

Kcl = −V
′(x)
γ

(14)

is derivable from purely classical potential V (x) and
Ksemi(x) does not explicitly involve ~,

Ksemi(x) =
ε

γ

∑
n≥1
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originates from the nonlinearity of the potential V (x) and
quantum nature of the system. The quantum contribution
to K(x) is therefore likely to influence both the fluctua-
tional and the relaxational paths of the dynamics and is
also responsible for the existence of a potential. Our ob-
jective is now to explore these aspects in the following two
sections.

4 Large fluctuations in equilibrated
semiclassical systems

In the thermally equilibrated systems a typical large fluc-
tuation of the variable x implies a temporary departure
from its stable state, xs to some remote state xf . This is
followed by a return to xs as a result of relaxation in the
absence of fluctuations pr. A nonzero value of pr which re-
sults from fluctuations due to surrounding drives the sys-
tem away from xs along a set of trajectories which form
the unstable invariant manifold and define the so-called
fluctuational paths. On the other hand the system relaxes
along the relaxational return path to xs under the condi-
tion pr = 0, which form stable invariant manifold. The lat-
ter condition implies ẋ = K(x). In each case the trajectory
represents the optimal paths along which the system is ex-
pected to move with overwhelming probability. Luchinsky
and McClintock [3] have studied these paths in analog
electronic circuits and demonstrated the growth and the
decay of classical fluctuations in equilibrium. We extend
this analysis to semiclassical domain using the same model
potential,

V (x) =
1
4
x4 − 1

2
x2. (16)

The quantum contribution to the growth and the de-
cay of fluctuations can be understood by recognizing the
Ksemi(x) term in the dynamics (8). In Figure 1 we compare
both the deterministic fluctuational and relaxational (op-
timal) paths for quantum and classical thermally equili-
brated systems. It is important to note that the maximum
possible amplitude of large fluctuations is almost double
for the quantum system compared to that for the corre-
sponding the classical system. This is due to the addition
of the nonlinear force term of quantum origin, Ksemi(x) in
the c-number equation (8), which is shown to be derivable
from the fluctuating field, and is related to the momentum
of the auxiliary Hamiltonian.
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Fig. 1. A plot of system co-ordinate x vs. time t signifying the
fluctuational and relaxational paths according to equation (8)
for the model system with V (x) = 1

4x
4 − 1

2x
2 for (a) semi-

classical case (ε = 1) and (b) classical case (ε = 0), (units
arbitrary).

Before leaving this section we make a brief remark
on the thermally nonequilibrated systems. Since the de-
tailed balance is not operative here, the optimal path to
a given state not just the time-reversed dynamical path
along which the system moves from this state to the sta-
ble state in absence of fluctuations pr. Thus for the driven
system, for example, the pattern of optimal path is gener-
ically different from that for the thermally equilibrated
systems. It may display singularities whose topological
manifestations as caustics, switching line, cusps etc. have
been thoroughly studied for classical systems. We believe
that Ksemi(x, t) where t signifies the driving by a periodic
force in V (x, t) is likely to play an important role in their
quantum counterparts.

5 Existence of a potential for dissipative
semiclassical system

In a significant analysis Graham and coworkers [5,6] had
examined the condition for existence of potential for clas-
sical dissipative systems. We now extend this analysis to
the present semiclassical context.

The general criterion for a dissipative dynamical sys-
tem described by autonomous equations of the form

ẋν = Kν(x) (17)

to have a potential φ(x) with respect to Qνµ (positive,
semidefinite symmetric matrix, which are considered to
be the matrix of transport coefficients) if there exists a
single-valued continuously differentiable and globally de-
fined function φ(x), bounded from below which is station-
ary in the limit sets of equation (17) and which satisfies

Kν(x) = −1
2
Qνµ

∂φ(x)
∂xµ

+ rν(x) (18)

with

rν
∂φ(x)
∂xν

= 0. (19)

Here for simplicity Qνµ is assumed to be independent of x.
The first and the second terms of equation (18) correspond
to irreversible and reversible part, respectively.

The stochastic process x(D1, t) which involve equa-
tion (17) and a symmetric non-negative matrix Qνµ is
governed by the Fokker-Planck equation for probability
distribution function P (x, t)

∂P (x, t)
∂t

= − ∂

∂xν
Kν(x)P +

D1

2
∂2

∂xν∂xµ
Qνµp. (20)

For D1 = 0 the above description reduces to (17). For
D1 6= 0 the steady state distribution defines the function
φ(x, t) by

P (x,D1, t→∞) = N(D1) exp
[
−φ(x,D1)

D1

]
(21)

N is the normalization constant. If φ(x) =
limD1→0 φ(x,D1) is a single-valued, continuously differ-
entiable function bounded from below it satisfies

Kν(x)
∂φ(x)
∂xν

+
1
2
Qνµ

∂φ(x)
∂xν

∂φ(x)
∂xµ

= 0. (22)

Equation (22) is equivalent to equations (18, 19). Inter-
preting equation (22) as usual as a Hamilton-Jacobi equa-
tion by defining φ(x) as action and ∂φ

∂xν = Pν as the mo-
mentum conjugate to xν , one can construct the auxiliary
Hamiltonian

H(x, p) =
1
2
Qνµpνpµ +Kν(x)pν . (23)

Graham and co-workers [5,6] have argued that a potential
can exist with equation (17) if the above Hamiltonian is
integrable for H = 0, because the condition implies that
there exist a smooth separatrix which connect smoothly
the stable and unstable manifolds emanating from the hy-
perbolic fixed points of the dynamical system.

We now turn back to our dissipative semiclassical sys-
tem described by equations (8, 9) where K(x) is defined
by equation (7). Recognizing equation (9) as equation (23)
for a one-degree-of-freedom system we identify

Q = 1
K(x) = Kcl +Ksemi. (24)

The potential function φ(x) can therefore be calculated
from equation (9) with H = 0 as (since pr = ∂φ(x)

∂x )

φ(x) = −2
∫
K(x)dx. (25)

The above expression can be made more explicit if we
make use of equation (7) in (25). We obtain

φ(x) = φcl(x) + φsemi(x) (26)
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where

φcl =
2
γ

∫
V ′(x)dx =

2
γ
V (x) (27)

and

φsemi(x) = − 2
γ

∑
n≥1

∫
x2n(−1)3n+1

22n(2n)!
∂2n+1V

∂x2n+1
dx. (28)

The existence of a potential for a dissipative, semiclassical
dynamical system is thus ascertained. The method essen-
tially relies on a dynamical definition pr as a derivative
of the potential φ(x) in a system described by an over-
damped quantum Markov process in the weak noise and
semiclassical limit. As elaborated earlier in Section 3 pr
has a statistical origin which drives the system away from
its stable state xs to a preassigned remote state xf from
which the system relaxes in absence of pr. It is thus im-
portant to realize that both the dynamical and statistical
notions are kept intact in the quantum treatment.

6 Conclusions

Keeping in view of the quantum nature of the system in
terms of the Wigner’s phase space function we examine the
semiclassical dynamics of a dissipative system in an Ohmic
environment. The weak noise limit of the stochastic pro-
cess then allows us to capture the essential features of the
dynamics within the framework of an auxiliary Hamilto-
nian description at the semiclassical level. Our results are
summarized as follows:

(i) The Wigner’s quantum correction to classical
Liouville equation gives rise to an optimal force in ad-
dition to usual the classical force term. This quantum
optimal force is essentially a result of an interplay of
nonlinearity of the system and the thermal fluctua-
tions of its environment and is derivable in terms of
an auxiliary Hamiltonian description.

(ii) This term is also responsible for modification of
growth and decay of large fluctuations from equilib-
rium for the appropriately thermalized quantum sys-
tem (compared to its classical counterpart). The sym-
metry of the fluctuational and the relaxational paths,
signifying the detailed balance, however, as expected
is kept preserved.

(iii) The quantum correction term implies the existence of
a potential for the dissipative semiclassical system.

Since the fluctuational and the relaxational paths have
been experimentally demonstrated as a part of physical
reality by analogue experiments [3] in the realm of large
fluctuations, we believe that the essential modification of
the integrable, nonintegrable and the singular topological
features of the dynamics due to semiclassical correction
might be relevant in several contexts. We hope to address
some of these issues in a future communication.

B.C. Bag is indebted to the Council of Scientific and Industrial
Research for a fellowship.
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